

香港中文大學

The Chinese University of Hong Kong

CENG3430 Rapid Prototyping of Digital Systems Lecture 06: Driving Peripheral Modules with ZedBoard

Ming-Chang YANG mcyang@cse.cuhk.edu.hk

Outline

- Digilent PmodTM Peripheral Modules
- Pmod Ports on ZedBoard
- Case Study 1: Pmod SSD (GPIO)
- Case Study 2: Pmod ALS (SPI Protocol)
- Implementation Notes

Digilent PmodTM Peripheral Modules

- Pmod[™] devices are <u>Digilent</u>'s line of small I/O interface boards.
 - They offer an ideal way to extend the capabilities of programmable logic and embedded control boards.
 - They communicate with system boards, via different protocols, using 6, 8, or 12-pin connectors.

https://store.digilentinc.com/pmod-modules-connectors/

Outline

- Digilent PmodTM Peripheral Modules
- Pmod Ports on ZedBoard
- Case Study 1: Pmod SSD (GPIO)
- Case Study 2: Pmod ALS (SPI Protocol)
- Implementation Notes

Pmod Ports on ZedBoard (1/3)

Pmod Ports on ZedBoard (2/3)

- Four Pmod connectors (JA1~JD1) interface to the PL-side of the Zynq-7000 AP SoC.
 - JA1~JD1 connect to Bank 13 (3.3V).
 - JA1~JD1 are placed in adjacent pairs on the board edge.
 - The clearance between <u>JA1 and JB1</u> and between <u>JC1 and JD1</u> are both 10mm.
 - Note: JC1 and JD1 are aligned in a dual configuration and routed differentially to support <u>LVDS</u> running at 525Mbs.
- One Pmod connect (JE1) interface to the PS-side of the Zynq-7000 AP SoC.

- On MIO pins [0,9-15] in Bank 0/500 (3.3V). CENG3430 Lec06: Driving Peripheral Modules with ZedBoard 2021-22 T2

Pmod Ports on ZedBoard (3/3)

b

а

10mm

Pmod	Signal Name	Zynq pin	Pmod	Signal Name	Zynq pin
	JA1	Y11		JB1	W12
	JA2	AA11		JB2	W11
	JA3	Y10		JB3	V10
JA1	JA4	AA9	ID4	JB4	W8
	JA7	AB11	JDT	JB7	V12
	JA8	AB10		JB8	W10
	JA9	AB9		JB9	V9
	JA10	AA8		JB10	V8

Pmod	Signal Name	Zynq pin	Pmod	Signal Name	Zynq pin
	JC1_N	AB6		JD1_N	W7
	JC1_P	AB7		JD1_P	V7
	JC2_N	AA4		JD2_N	V4
JC1	JC1 JC2_P Y4	Y4	JD1	JD2_P	V5
Differential	JC3_N	T6	Differential	JD3_N	W5
	JC3_P	R6		JD3_P	W6
	JC4_N	U4		JD4_N	U5
	JC4_P	T4		JD4_P	U6

Pmod	Signal Name	Zynq pin	MIO
	JE1	A6	MIO13
	JE2	G7	MIO10
	JE3	B4	MIO11
JE1	JE4	C5	MIO12
MIO Pmod	JE7	G6	MIO0
	JE8	C4	MIO9
	JE9	B6	MIO14
	JE10	E6	MIO15

http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf

CENG3430 Lec06: Driving Peripheral Modules with ZedBoard 2021-22 T2

ZedBoa

Outline

- Digilent PmodTM Peripheral Modules
- Pmod Ports on ZedBoard
- Case Study 1: Pmod SSD (GPIO)
- Case Study 2: Pmod ALS (SPI Protocol)
- Implementation Notes

Case Study 1: Pmod SSD (1/2)

- The Pmod SSD is a two-digit seven-segment display.
- Users can toggle through GPIO signals which digit is currently on at a rate of 50 Hz or greater.
 - To achieve persistence-of-vision to give the effect of both digits being lit up simultaneously.

Case Study 1: Pmod SSD (2/2)

Description

Features

What's Included

Quickly find what you need to get started and reduce mean time to blink.

All product support including documentation, projects, and the Digilent Forum can be accessed through the product resource center.

Resource Center

The Digilent Pmod SSD (Revision A) is a 2 digit seven-segment display commonly used to display a counter or timer.

Buy			
Reference Manu	ual Technical Support		
	Pmod SSD		
Seve	en-segment Display		
	Features		
 Two-digit h display 	igh brightness seven-segment		
 Easily view 	a counter or timer		
Common Cathode configuration			
 Two 6-pin Pmod connectors with <u>GPIO</u> 			
interfaces			
 Follows the 	Digilent a Pmod Interface		
Specificatio	on Type 1		
	Electrical		
Bus	GPIO		
Specification Version	1.2.0		
Logic Level	3.3V		
	Physical		
Width	1.0 in (2.54 cm)		

Pmod SSD: Interfacing via GPIO

- The Pmod SSD communicates with the host board via the General Purpose Input/Output (GPIO) pins.
 - This does not follow a strict set of rules for communication.
 - Rather, the host can <u>send signals</u> to the Pmod via output pins at any time (to have the Pmod immediately respond); the host can also <u>receive signals</u> from Pmod via input pins at any time (to take immediate actions).
 - Note: Since the pins are used for communication, the capability to operate a large number of Pmods might be limited.
- A logic level high signal on a particular anode will light up that respective segment (i.e., Segment A~G) immediately.
 - E.g., ssd[0] <= 1; -- light up segment A</pre>

https://digilent.com/reference/learn/fundamentals/communication-protocols/gpio/start?redirect=1

Pmod SSD: Pinout Description Table

Header J1

Pin	Signal	Description
1	AA	Segment A
2	AB	Segment B
3	AC	Segment C
4	AD	Segment D
5	GND	Power Supply Ground
6	VCC	Positive Power Supply

Header J2

Pin	Signal	Description	
1	AE	Segment E	
2	AF	Segment F SSd	
3	AG	Segment G	
4	С	Digit Selection pin Se	
5	GND	Power Supply Ground	
6	<u>VCC</u>	Positive Power Supply	

https://store.digilentinc.com/pmod-ssd-seven-segment-display/

Pmod SSD: Time Multiplexing

- Seven pins (i.e., ssd) are "shared" by two displays to control the seven segments of each digit.
- One pin (i.e., **sel**) is to select which display to drive.

sel=1: left digit
sel=0: right digit

- To display both digits, we need to alternate between the two digits faster enough than eyes can perceive.
 - For example, we can alternately activate the 7-segment on the right (and then on the left) at a rate of 50 Hz.
 - It will then look like both digits are displayed simultaneously.

Pmod SSD: LED Mapping and Activation

- Each digit has seven LEDs, labeled A through G.
- To make digits? We can light up segments as below:

Digit	Segments	Value (ssd)
0	ABCDEF	"1111110"
1	ВC	"0110000"
2	ABDEG	"1101101"
3	ABCDG	"1111001"
4	BCFG	"0110011"
5	ACDFG	"1011011"
6	ACDEFG	"1011111"
7	ABC	"1110000"
8	ABCDEFG	"1111111"
9	ABCFG	"1110011"

Pmod SSD: Connect to ZedBoard

а

- You can connect Pmod SSD to ZedBoard through either <u>JA1 & JB1</u> or <u>JC1 & JD1</u>.
 - Either the top row of pins or the bottom rows of pins is fine, but the used pins must be specified in the XDC file.

CENG3430 Lec06: Driving Peripheral Modules with ZedBoard 2021-22 T2

LedBoo

Pmod SSD: XDC Constraint File

• To drive	To drive the Pmod SSD, you also need the following:		
	<pre>set_property IOSTANDARD LVCMOS33 [get_ports ssd]</pre>		
	<pre>set_property PACKAGE_PIN Y11 [get_ports {ssd[6]}]</pre>		
0	<pre>set_property PACKAGE_PIN AA11 [get_ports {ssd[5]}]</pre>		
Seven	<pre>set_property PACKAGE_PIN Y10 [get_ports {ssd[4]}]</pre>		
Segments	<pre>set_property PACKAGE_PIN AA9 [get_ports {ssd[3]}]</pre>		
(SSU)	<pre>set_property PACKAGE_PIN W12 [get_ports {ssd[2]}]</pre>		
	<pre>set_property PACKAGE_PIN W11 [get_ports {ssd[1]}]</pre>		
	<pre>set_property PACKAGE_PIN V10 [get_ports {ssd[0]}]</pre>		
Digit Select	<pre>set_property IOSTANDARD LVCMOS33 [get_ports sel]</pre>		
(sel)_	<pre>set_property PACKAGE_PIN W8 [get_ports sel]</pre>		

	Pmod	Signal Name	Zynq pin	Pmod	Signal Name	Zynq pin
		JA1	Y11		JB1	W12
		JA2	AA11		JB2	W11
		JA3	Y10		JB3	V10
	14.1	JA4	AA9	ID1	JB4	W8
	3711	JA7	AB11	001	JB7	V12
2×6		JA8	AB10		JB8	W10
	JA9	JA9	AB9		JB9	V9
		JA10	AA8		JB10	V8

Class Exercise 6.1

Show how to activate the LED values (ssd) for hexadecimal digits:
A, b, C, d, E, F.

Digit	Segments	Value (ssd)
0	ABCDEF	"1111110"
1	ВC	"0110000"
2	ABDEG	"1101101"
3	ABCDG	"1111001"
4	BCFG	"0110011"
5	ACDFG	"1011011"
6	ACDEFG	"1011111"
7	ABC	"1110000"
8	ABCDEFG	"1111111"
9	ABCFG	"1110011"
Α		
b		
С		
d		
E		
F		

Student ID: _

Name[.]

CENG3430 Lec06: Driving Peripheral Modules with ZedBoard 2021-22 T2

Date:

Outline

- Digilent PmodTM Peripheral Modules
- Pmod Ports on ZedBoard
- Case Study 1: Pmod SSD (GPIO)
- Case Study 2: Pmod ALS (SPI Protocol)
- Implementation Notes

Case Study 2: Pmod ALS (1/2)

• The Pmod ALS demonstrates light-to-digital sensing through a single ambient light sensor.

https://digilent.com/shop/pmod-ssd-seven-segment-display/

Case Study 2: Pmod ALS (2/2)

Description

Features

What's Included

Support

Quickly find what you need to get started and reduce mean time to blink.

All product support including documentation, projects, and the Digilent Forum can be accessed through the product resource center.

Resource Center

Pmod ALS

The Digilent <u>PmodALS</u> (Revision A) demonstrates light-to-digital sensing through a single ambient light sensor. Digilent Engineers designed this Pmod around the @ Texas Instruments ADC081S021 analog-to-digital converter and @ Vishay Semiconductor's TEMT6000X01.

Buy			
Reference Manu	ual Technical Support		
	Pmod ALS		
Am	bient Light Sensor		
	Features		
 Simple am Convert lig resolution Small PCB 0.8 in (2.0 c 	bient light sensor ht to digital data with 8-bit size for flexible designs 0.8 in × :m × 2.0 cm)		
6-pin Pmod	d port with SPI interface		
 Follows the Specification 	Digilent i Pmod Interface		
	Electrical		
Bus	SPI		
Specification Version	1.2.0		
Logic Level	3.3V		

Physical

Pmod ALS: Function Description

- The PmodALS utilizes a single ambient light sensor (ALS) for user input.
 - The amount of light (where the ALS is exposed to) determines the voltage level;
 - The voltage level is then passed into an on-board analogto-digital converter (ADC), which converts it to 8 bits of data.
 - A value of 0 indicates the lowest light level;
 - A value of 255 indicates the highest light level.

Pmod ALS: Interfacing via SPI (1/3)

- The host board must communicate with the PmodALS via the Serial Peripheral Interface (SPI) protocol.
 - SPI communication is a <u>full-duplex data link</u> using four wires.
 - The master (i.e., the board) <u>initiates</u> or <u>terminates</u> the communication by pulling down or pulling up the Slave Select (SS) respectively.
 - The master drives a Serial Clock (SCLK) line to provide a sync. clock.
 - The master transmits data via the Master-Out-Slave-In (MOSI) wire and receives data via the Master-In-Slave-Out (MISO) wire, at the rate of one bit of data per clock cycle.

Pmod ALS: Interfacing via SPI (2/3)

- SPI has <u>four</u> operation modes based on two parameters: clock polarity (CPOL) and clock phase (CPHA).
 - If CPOL=0, the first clock edge is a <u>rising edge</u>; otherwise (if CPOL=1), the first clock edge is a <u>falling edge</u>.
 - If CPHA=Ø, the first bit is written on the SS falling edge and read on the first SCLK edge; otherwise, the first bit is written on the first SCLK edge and read on the second SCLK edge.
 - The mode is chosen based on how the device is designed.

Pmod ALS: Interfacing via SPI (3/3)

- The on-board ADC of Pmod ALS is read-only.
 - The only wires required are the Slave Select (SS), Master-In-Slave-Out (MISO), and Serial Clock (SCLK).
- The on-board ADC generates 8-bit data regarding the light level but the actual data to be sent are of 15 bits.
 - The first 3 bits are leading zeros; bits 4~11 indicate the light level with the MSB first; and bits 12~15 are trailing zeros.
- The serial clock should run between 1 MHz ~ 4 MHz.

Pmod ALS: Connect and Pinout Table

- You can connect Pmod ALS to ZedBoard through either of JA1, JB1, JC1, or JD1.
 - Either the top row of pins or the bottom rows of pins is fine, but the used pins must be specified in the XDC file.

Pin	Signal	Description
1	CS	Chip Select
2	NC	Not Connected
3	SDO	Master-In-Slave-Out
4	SCK	Serial Clock
5	GND	Power Supply Ground
6	VCC	Power Supply (3.3V/5V)

Pmod ALS: XDC Constraint File

• To drive the Pmod ALS, you also need the following:

set_property PACKAGE_PIN AB7 [get_ports {cs}];
set_property IOSTANDARD LVCMOS33 [get_ports cs];

set_property PACKAGE_PIN AB6 [get_ports {mosi}];
set_property IOSTANDARD LVCMOS33 [get_ports mosi];

set_property PACKAGE_PIN Y4 [get_ports {miso}];
set_property IOSTANDARD LVCMOS33 [get_ports miso];

set_property PACKAGE_PIN AA4 [get_ports {sclk}];
set_property IOSTANDARD LVCMOS33 [get_ports sclk];

OdALS
LC P S C C C C C C C C C C C C C C C C C

	Pmod	Signal Name	Zynq pin	Pmod	Signal Name	Zynq pin
		JC1_N	AB6		JD1_N	W7
		JC1_P	AB7		JD1_P	V7
		JC2_N	AA4		JD2_N	V4
	JC1	JC2 P	Y4	JD1	JD2_P	V5
	Differential	JC3_N	T6	Differential	JD3_N	W5
2×6		JC3_P	R6		JD3_P	W6
		JC4_N	U4		JD4_N	U5
		JC4_P	T4		JD4_P	U6

Class Exercise 6.2

Student	ID
Name:	

Date:

- The on-board ADC generates 8-bit data regarding the light level but the actual data to be sent are of 15 bits.
 - The first 3 bits are leading zeros; bits 4~11 indicate the light level with the MSB first; and bits 12~15 are trailing zeros.
- Given the 15-bit data rx_data received from Pmod ALS, extract the information about the light level (i.e., bits 4~11) and assign it to an 8-bit signal s:

signal s : std_logic_vector(7 downto 0);

Outline

- Digilent PmodTM Peripheral Modules
- Pmod Ports on ZedBoard
- Case Study 1: Pmod SSD (GPIO)
- Case Study 2: Pmod ALS (SPI Protocol)
- Implementation Notes

Implementation Notes (1/2)

- General Purpose Input/Output (GPIO) based Pmod
 - GPIO does not follow a strict set of rules for communication; rather, the host can send/receive signals to/from the Pmod via input/output pins <u>at any time</u>.
 - The board can easily read from input pins or write to output pins, via signal assignment (see Lab06), for communication.
- Serial Peripheral Interface (SPI) based Pmod
 - SPI is a sync. serial communication scheme that uses four wires: slave select, serial clock, master-out/in-slave-in/out.
 - The host board (i.e., the SPI master) needs to strictly follow the SPI protocol regarding how to communicate with the Pmod (i.e., the SPI slave) through the four wires.
 - We can implement the SPI master via HDL, use <u>third-party</u>
 <u>SPI master</u> (*see Lab06*), or use <u>Digilent Pmod IP</u>.

Implementation Notes (2/2)

- Inter-Integrated-Circuit (I²C) based Pmod
 - I²C is also a sync. serial comm. scheme with only two wires: a serial data line and a serial clock line (drove by master).
 - The host board (i.e., the master) also needs to strictly follow the I²C protocol to interact with the Pmod (i.e., the slave).
 - We can implement the I²C master via HDL, use <u>third-party</u>
 I²C master, or use <u>Digilent Pmod IP</u>.
- Universal Asynchronous Receiver/Transmitter
 (UART) based Pmod
 By protocol:
 - UART is an async. serial comm. scheme that uses one transmit data line and one receive data line.
 - No clock is used but a baud rate must be specified.
 - We can implement UART receiver/transmitter via HDL, use <u>third-party implementation</u> or <u>Pmod IP</u>.

Summary

- Digilent PmodTM Peripheral Modules
- Pmod Ports on ZedBoard
- Case Study 1: Pmod SSD (GPIO)
- Case Study 2: Pmod ALS (SPI Protocol)
- Implementation Notes

